WSN-DD: A Wireless Sensor Network
Deployment Design Tool

David Santiago Bonilla Bonilla and Ixent Galpin

Dpto. de Ingenieria, Universidad Jorge Tadeo Lozano, Bogota, Colombia.
david7189@gmail.com, ixentQutadeo.edu.co

Abstract. Query processing techniques have been shown to consider-
ably reduce software development efforts for wireless sensor networks.
However, deploying a sensor network remains a difficult and error-prone
task. This paper presents a comprehensive tool to assist with the de-
sign of sensor network deployments, which takes into account a broader
range of concerns than previous approaches. Users specify high-level re-
quirements, such as location of nodes, using a simple graphical interface.
The tool invokes a sensor network query processor to statically deter-
mine the validity of the deployment set out by the user for a given query
workload, estimates performance in terms of the query processor’s QoS
metrics, and generates executable code.

Keywords: query processing, wireless sensor networks, deployment de-
sign, Quality-of-Service

1 Introduction

Following almost two decades of research and development, the use of wireless
sensor networks (WSNs) has become increasingly pervasive. However, recent
accounts of real-word WSN deployments report that deploying a WSN remains
a non-trivial and onerous task (see, e.g., [I2I17]). The problem that we address in
this paper is the design of WSN deployments. We propose WSN-DD (for Wireless
Sensor Network-Deployment Design), a pre-deployment tool to assist with the
design of environmental WSNs, available at http://wsn-dd.utadeo.edu.co/.
Given metadata such as WSN characteristics, a data collection task, and Quality-
of-Service expectations, WSN-DD determines statically the validity of particular
set of functional and non-functional requirements. We note that our focus is on
WSN deployments whose data collection task is carried out in the context of a
sensor network query processor (SNQP) (e.g., SNEE [7] or TinyDB [I1]).

A diverse range of (often unexpected) problems are encountered during the
deployment of a WSN which may lead it to fail [2I3]. Returning to a WSN
deployment site to diagnose and resolve issues causes delays and increased costs.
In the case of certain deployments, it may be risky to attempt to access WSN
nodes once they have been deployed (e.g., as is the case with the landslide
monitoring deployment described in [I7]) Data loss resulting from WSN failure
may also have serious consequences for end-users monitoring a phenomenon.


http://wsn-dd.utadeo.edu.co/

The reasons that WSNs do not work as expected are broad, including is-
sues relating to the WSN nodes themselves (e.g., premature energy depletion
or software bugs), issues relating to links between WSN nodes (e.g., network
congestion), path issues (e.g., where data source nodes are not connected to a
gateway), and Quality-of-Service (QoS) issues (e.g., a WSN lifetime falls short
of application requirements) [3]. These problems persist in spite of a plethora
of complementary approaches proposed to facilitate different aspects of WSN
deployment. SNQPs are one such proposal, as they enable WSNs to be pro-
grammed using declarative query languages, and aim to alleviate some of the
challenges inherent in developing software for WSNs.

Various solutions have been proposed to support WSNs at different stages in
the deployment process. Our focus is on the pre-deployment stage, and is com-
plementary to deployment-time tools used to validate newly deployed WSNs in
the field (e.g., TASK [4]) and of post-deployment tools used to monitor ongoing
WSN deployment health (e.g., Tolle et al. [T9]). As explained in the survey of
related work in Sec.[d] existing pre-deployment techniques tend to focus on piece-
wise solutions to the WSN deployment problem. Furthermore, these techniques
are not integrated with a SNQP, and are therefore unable to reap the benefits
that an SNQP provides [7/T1].

The main contribution of this paper is a description of a comprehensive tool
to assist with the deployment of WSNs that enables its users to specify high-
level requirements for a WSN deployment, and to statically verify its feasibility
and obtain information about expected performance in terms of QoS metrics
(Sec [2)). The use of the tool is illustrated by an example inspired from a real
WSN deployment (Sec .

2 System Description

WSN-DD enables users to specify high-level requirements for WSN deployments
over a web-based Google Maps graphical interfaceﬂ The tool is integrated with
SNEE [7/8], an SNQP which optimises declarative queries coupled with QoS
expectations and metadata about the underlying computing fabric into a query
execution plan (QEP) and executable code for the TinyOS operating system [10].
WSN-DD therefore covers a broad range of concerns in the WSN design and
deployment process, spanning from requirements specification to programming.

WSN-DD comprises seven steps, in which requirements are solicited in a
wizard-like fashion, summarised in Fig. [Il The first two steps are preparatory
steps: Area Selection enables the user to navigate to the appropriate location
the map. In the Obstacle Definition step, the user draws polygons directly onto
the map, to demarcate obstacles that block wireless communications.

In Stream Creation the logical extents to be subsequently queried are de-
fined. This enables the generation of a logical schema metadata for SNEE, which
specifies the types of sensors that will comprise each sensor stream.

1 The source code is available from our repository at [https://github.com/
david7189/wsn-dd on an MIT license.


https://github.com/david7189/wsn-dd
https://github.com/david7189/wsn-dd

4 2\ 4 2\ 4 2\

1. Area Selection 3. Stream Creation 5. Design Validation
7. Query+QoS
\ J \ J _ J Validation/
¢ ¢ ¢ Compilation with
p N e N - N SNEE

2. Obstacle Definition 4. Node Placement 6. Topology Control

- J - J AN J

T

Fig. 1. Summary of the steps in the WSN-DD wizard.

In Node Placement, the user adds WSN nodes to the deployment, subject
to a pre-defined budget and the cost of each node type. A gateway node, where
query results are to be delivered, is also specified. The user associates nodes
to the streams defined in the previous step, resulting in a physical schema for
SNEE, which maps logical streams to physical WSN nodes.

Design Validation carries out tests to identify connectivity and related issues
between WSN nodes. Using the previously defined node locations and obstacles,
a network connectivity graph G is derived. Warnings are flagged if (a) source
nodes are disconnected from the gateway in G (i.e., there exists no path in G
from a source to the gateway), (b) a node is a potential bottleneck (i.e., its
degree in G is above a certain threshold), or (¢) a node is a single point of failure
(i.e., its loss would lead a data source node to become disconnected from G).
The intention is that, based on problems flagged, a user will review the node
placement in the previous step before proceeding.

In the next step, topology control techniques [I8] are employed to simplify the
network topology graph G, with the aim of reducing energy consumption and ra-
dio interference. The user can select different algorithms to achieve this, viz. Rel-
ative Neighbourhood Graph, Delaunay Triangulation and Minimum Spanning
Tree [I8]. The result of this step is a routing graph G’, which a user can visu-
alise before proceeding to the next step. G’ constitutes the network description
metadata which will be used by SNEE for query validation/compilation.

The final step requests the user to enter a query in SNEEql to specify the
functional requirements for a data collection task. The non-functional require-
ments are expressed in the form of QoS expectations: acquisition interval to
specify the time between each sensor reading, and delivery time which stipulates
the maximum time allowed to elapse between a value being acquired at a sensor
node, and the respective tuple being delivered at the gateway node. WSN-DD
invokes SNEE to determine whether the data collection task embodied by the
WSN defined in the previous steps, query and QoS expectations are feasible. If
not feasible, the respective error message is given, and the user can make ad-
justments to the deployment design before retrying. Otherwise, SNEE produces
a QEP and executable source code is generated for the WSN nodes. The user is



presented with estimated QoS metrics for the QEP such as lifetime, calculated
analytically based on cost estimation models [7].

3 Designing an Environmental Monitoring WSN

The Chingaza Pdramo is a highland ecosystem in the Colombian Andean moun-
tains, critical to the water supply of Bogotd (population: over 8 million). Due to
the onset of climate change, it has become the object of close scientific study. The
tool was used to aid the design of a WSN deployment carried out by Jorge Tadeo
University in Dec 2015 with the aim of monitoring micro-climatic conditions in
the Calostros brook area of the ecosystem (although, we note, the deployment
itself differed from this example). Each step from Fig. [1| is described in turn.
Step 1: The user locates the area of interest. Step 2: a rocky outcrop identified
as a potential obstacle is demarcated as a polygon on the map. Step 3: Two
streams are defined for deployment, one to monitor flooding of Calostros brook,
and another to measure climatic variables, represented by the logical schema:

brook(id:int, ts:time, depth:float)
weather (id:int, ts:time, temp:float, humidity:float)

Step 4: GPS coordinates taken during a field trip are uploaded and used to
specify four points deemed to be of interest for monitoring the brook, where
sensing nodes will be located. An additional point on higher ground with a good
quality mobile phone signal is assigned as the gateway. The four nodes located
along the brook are associated with the brook extent, and three nodes (including
the gateway) are associated with the weather extent. Additional relay nodes are
added by clicking on the map to connect the source nodes with the gateway.

Step 5: The topology is validated, and various issues flagged (see Fig. [2)).
These are rectified by returning to the previous step and adjusting node posi-
tions. Step 6: The user experiments with different topology control algorithms.
Step 7: The following query and QoS expectations are entered:

SELECT AVG(depth) FROM brook [NOW] ;
DELIVERY TIME = 3600s, ACQUISITION INTERVAL = 60s

The tool reports that the QEP generated is feasible. The user experiments with a
shorter delivery time and acquisition interval, which as to be expected, decreases
the expected lifetime QoS. As QoS expectations are made more stringent, it is
reported that the QEP is no longer feasible.

4 Related Work

The techniques described in the literature to aid WSN deployment design tend
to focus on a single step amongst those shown in Fig. Oyman et al. [I5]
focuses on the problem finding an optimal placement of gateway nodes in large-
scale networks, trading off budget and network lifetime. SensDep [16] presents a



O



	WSN-DD: A Wireless Sensor Network Deployment Design Tool

